SEG DISC 2019: Physics and Mechanics of Rocks: A Practical Approach - Jul 25th

SEG DISC 2015 (Distinguished Instructor Short Course):

For more information and to register click here

Registration will be on the SEG website, this year. Pricing includes breakfast, lunch and refreshments:
SEG Member           $355
SEG Non Member   $450
SEG Student            $130

Meeting Location:
Schlumberger
10001 Richmond Ave., Q Auditorium
Houston, TX 77042

Rock physics is an interdisciplinary branch of geophysics that explains geophysical remote sensing data, such as seismic wave velocities and electrical conductivity, in the context of mineralogy, fluid content, and environmental conditions. Thus, rock physics interpretations often require inputs from physics, geology, chemistry, chemical engineering, and other fields. For example, seismic waves travel faster in cemented rocks than in loose sediments. Since the physical behavior of rocks controls their seismic response, rock physics brings key knowledge that helps with the interpretation of rock properties such as porosity, permeability, texture, and pressure. Rock physics combines indirect geophysical data (such as seismic impedance, sonic log velocities, and laboratory measurements) with petrophysical information about porosity, fluid type, and saturation for use in reservoir characterization, evaluation, and monitoring. Typically, rock physics is used by petroleum engineers doing reservoir simulations, geologists evaluating over-pressures and making basin models, and anyone doing a monitoring survey to map fluids from 4D seismic. For all such purposes, an understanding of wave propagation is required to relate seismic properties (e.g. velocity and attenuation) to the physical properties of rocks and to evaluate seismic data in terms of subsurface petrophysical parameters.  For example, an application of rock physics is seen in 4D seismic data (i.e. repeated seismic data acquired from the same field), where fluid saturation changes are evaluated from changes in velocity using fluid substitution models. Another rock physics application is to understand and predict the effect of clay minerals on the load-bearing capacity and strength of rocks using fundamental knowledge about the properties of clay minerals (e.g. CEC, surface area, dispersability, charge, sorption, plasticity, etc.), the clay water content, as well as the effects of their distribution within the rock. Thus, an effective prediction of rock properties from indirect measurements requires a solid understanding of the physical behavior of rocks under in situ conditions of pore and confining pressures and fluid saturations.

During this one-day short course, I will provide the earth scientist and engineer with a foundation in rock physics to describe the physical processes that govern the response of rocks to the external stresses essential for reservoir characterization. The course will also offer practical guidance to help better analyze existing data. A major goal of this course is to offer practical instruction and provide working knowledge in the areas of rock physics and rock mechanics for rock characterization.

Speaker Biography: Dr. Manika Prasad, Colorado School of Mines
Manika Prasad has been at Colorado School of Mines (CSM) for the past 14 years, and was previously at Stanford University and University of Hawaii. She received her BS from Bombay University and her MS and PhD from Kiel University in Germany. Prasad’s main interests lie in understanding microstructural controls on geophysical data. She is the recipient of the Virgil Kaufmman Gold Medal in 2017, the Outstanding Educator Award (2015), and the AAPG-SEG Distinguished Lecturer Award (2012). Known as the "mud queen" among her peers and students, she pioneered integral research in source rich rock and fluid properties using tools and techniques from the geosciences and engineering domains. In addition to her teaching and research duties at CSM, Prasad serves as Associate Editor of Geophysics and is 2nd Vice President of SEG.

  •   Intended Audience:
  • Seismic imagers and interpreters who want to learn how fluids, stress, and other environmental effects change seismic signatures
  • Geophysicists who wish to derive rock properties and constrain well-to-seismic ties
  • Geologists and sedimentologists looking to develop predictive models of sedimentary environments and stratigraphic events
  • Reservoir engineers to build porosity, permeability, and fluid coverage models for reservoir simulations using 3D and 4D seismic data
  • Basin modelers and completions engineers to evaluate stresses from well log and seismic data
  • Geoscientists doing formation evaluation and well logging interpretations
  • Basin managers and team leaders who wish to evaluate the accuracy of predictions and understand risk and errors in models

For more information and to register click here

Course Schedule
  7:00 Continental breakfast
  7:00 Registration opens
  8:00 Course starts
10:00 AM break
12:00 Lunch
  2:30 PM break
  5:00 Course ends

When
7/25/2019 8:00 AM - 6:00 PM
Eastern Daylight Time
Where
Kathy Sanvido

Sign In